How do I decrypt an RSA message?
To decrypt a ciphertext C using an RSA public key we simply compute the plaintext M as: M = Cd mod N. Note that both RSA encryption and RSA decryption involve a modular exponentiation and so we would be well advised to use the Repeated Squares Algorithm if we want to make these processes reasonably efficient.
Can you decrypt RSA with public key?
Under RSA encryption, messages are encrypted with a code called a public key, which can be shared openly. Due to some distinct mathematical properties of the RSA algorithm, once a message has been encrypted with the public key, it can only be decrypted by another key, known as the private key.